A TOPSIS Data Mining Demonstration and Application to Credit Scoring

نویسندگان

  • Desheng Dash Wu
  • David L. Olson
چکیده

The technique for order preference by similarity to ideal solution (TOPSIS) is a technique that can consider any number of measures when seeking to identify solutions close to an ideal and far from a nadir solution. TOPSIS traditionally has been applied in multiple criteria decision analysis. In this article, we propose an approach to develop a TOPSIS classifier. We demonstrate its use in credit scoring, providing a way to deal with large sets of data using machine learning. Data sets often contain many potential explanatory variables, some preferably minimized, some preferably maximized. Results are favorable by a comparison with traditional data mining techniques of decision trees. Proposed models are validated using Mont Carlo simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

Personal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)

Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...

متن کامل

Comparative Study of Data Mining Model for Credit Card Application Scoring in Bank

The growth of credit card application needs to be balanced with the anticipation of bad credit risk because it does not use security collateral as warranty. The usage of credit scoring can be used to help the credit risk analysis in determining the applicant's eligibility. Data mining has been proven as a valuable tool for credit scoring. The aim of this research is to design a data mining mode...

متن کامل

Using the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)

In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDWM

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006